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ABSTRACT 

The resolved rate law for a manipulator 
provides the instantaneous joint rates 
required to satisfy a given instantaneous 
hand motion. When the joint space has 
more degrees of freedom than the task 
space the manipulator is kinematically 
redundant and the kinematic rate equa- 
tions are underdetermined. These equa- 
tions can be locally optimized, but the 
resulting pseudo-inverse solution has 
been found to cause large joint rates in 
some cases. In this paper a weighting 
matrix in the locally optimized (pseudo- 
inverse) solution is dynamically adjusted 
to control the joint motion as desired. 
Joint reach limit avoidance is demon- 
strated in a kinematically redundant 
planar arm model. The treatment is 
applicable to redundant manipulators with 
any number of revolute joints and to non- 
planar manipulators. 

INTRODUCTION 

The resolved rate law for a manipulator 
converts the instantaneous hand rates 
into instantaneous joint rates [ l ] .  This 
allows the joints to be simultaneously 
commanded to move the hand with a desired 
instantaneous translational and rotation- 
al velocity. The space that the hand 
moves in is called the task space [2], 
and is usually composed of 6 degrees of 
freedom. The space mapped out by the 
joint angles is  called the joint space. 
The mathematical relationship between the 
task space and the joint space defines 
the resolved rate law for the manipula- 
tor. 

The kinematic equations express the hand 
state in terms of the manipulator joint 
angles. The matrix that results from 
differentiating the kinematic equations 
is the Jacobian matrix for the manipula- 
tor. The kinematic equations for most 
manipulators are very nonlinear and 
generally cannot be inverted to solve for 
the joint angles in terms of the hand 
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parameters [2]. 

The Shuttle Remote Manipulator System 
(SRMS) has six joints and the end- 
effector operates in a six degree of 
freedom space (three spatial and three 
angular). This is  a convenient design 
because the number of degrees of freedom 
in the joint space and in the task space 
are the same; the Jacobian matrix is 
square and can be easily inverted, except 
in specific configurations where the 
Jacobian matrix is singular. when these 
singularities are avoided, the inverted 
Jacobian is  a valid resolved rate law for 
the SRMS because it transforms a desired 
end-effector translational and rotational 
velocity into joint rate commands. 

The simple resolved rate law described 
above i s  used in the SRMS flight software 
to drive the manual and the aqtomatic 
modes. For these modes there is a 
requirement to move the hand coordinate 
system (or some coordinate system rigidly 
associated with the hand system) from one 
state to another with translation along a 
r e l a t i v e l y  straight path and rotation 
about a constant vector. Much effort has 
been spent finding such paths that are 
free from encounters with joint reach 
limits. When a manipulator has more 
joints than the number of degrees of 
freedom in the task space it is said to 
be kinematically redundant [ 3 ] .  The 
Jacobian matrix for a kinematically 
redundant manipulator is not square and 
cannot be directly inverted to arrive at 
an easy resolved rate law. There is not 
enough information to solve for the joint 
rates needed to move the hand. In 
general, there are an infinite number of 
ways to move the joints in unison to 
provide the desired hand motion for the 
kinematically redundant manipulator 

It i s  essential to arrive at a resolved 
rate law in order to control or simulate 
a manipulator. Several methods have been 
introduced to arrive at adequate resolved 
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rate laws for the kinematically redundant 
manipulator. One approach is to add 
specific constraints on the manipulator 
so that the kinematic equations can be 
solved. A more general approach is to 
minimize or  maximize an objective 
function subject to the kinematic 
constraint equations. These methods 
have been investigated in several papers 
to study iterative solutions to the 
kinematically redundant constraint equa- 
tions [1],[3-71. 

In this paper a modified pseudo-inverse 
technique is used as a control law with 
joint reach avoidance for the redundant 
manipulator. This law can be derived by 
optimizing the sum of the weighted 
squares of the joint rates. The behavior 
of the control law is demonstrated and 
investigated using a kinematically 
redundant planar arm simulation. Several 
algorithms are introduced and evaluated 
for dynamically adjusting the weighting 
matrix during the trajectory for the 
purpose of avoiding joint reach limits. 

PROBLEM FORMULATION 

The resolved rate law €or a manipulator 
is derived from the kinematic equations. 
For a manipulator with n joints and a 
hand operating in a task space of m 
dimensions, the m kinematic equations are 
of the form: 

where x is the vector containing the task 
space coordinates and e is the vector 
of joint angles. If each joint is moved 
by a small amount, Ae, then the 
movement of the hand in the task 
coordinates, Ax, is found in the 
differential of the kinematic equations: 

AX = [J] Ae (2) 

where J is the Jacobian matrix [a], com- 
posed of the partial derivatives of the 
functions f with respect to each of the 
joint angles. Similarly, the kinematic 
rate equations are found by differenti- 
ating the kinematic equations with re- 
spect to time. 

v = dx/dt = [J] w (3) 

where v is the hand velocity vector ex- 
pressed in the task coordinates and w is 
the vector of joint rates. The reFolved 
rate law is found by solving the 
kinematic rate equation 3 for the joint 
rates (w) in terms of the hand velocity 
(v). In the case where the task space 
and the joint space have the same number 
of dimensions (m=n) the Jacobian matrix 
is square and the resolved rate law is 
easily found. 

-1 
w = [J] v (4) 

For a kinematically redundant manipulator 
(n>m) the Jacobian matrix is not square 
and the system of equations is 
underdetermined. For a 7 jointed 
manipulator operating in a task space of 
6 dimensions there are 6 kinematic equa- 
tions and 7 joint variables. The 
Jacobian matrix is a 6 by 7 matrix. To 
solve the set of equations, introduce an 
objective function to be minimized sub- 
ject to the constraint equations: 

v6x1 = J6x7 w7x1 (5 

A weighted function of joint angles 
proposed by Whitney [l] is: 

2 2 
Z = 112 (all W1 + ... ann Wn ) (6 

or in matrix notation: 

T 
Z =  1/2 W A w (7) 

Using the method of Lagrangian 
multipliers the solution is: 

-1 T -1 T -1 
W - A  J ( J A  J )  v ( 8 )  

When the weighting matrix is not used, or 
set to identity, the solution is: 

T T -1 
W = [ J ( J J  ) ] v (9) 

The expression in brackets in equation 9 
is the Moore-Penrose pseudo-inverse of 
the Jacobian for the underdetermined 
system of equations 5 [4],[9]. 

The constraint on the weighting matrix A 
is such that the function Z must be non- 
negative for all values of w [ll]. This 
condition will be satisfied by 
considering only diagonal weighting 
matrices with positive values. For the 
case of the seven jointed manipulator 
described above this resolved rate law is 

-1 T -1 T -1 
w = A  J (J A J )  V (10) 

where the dimensions of each matrix and 
vector have been indicated for clarity. 
The weighting matrix A can be used to 
control the motion of the joints by 
dynamically changing the values of the 
diagonal components during the 
trajectory. 

7x1 7x7 7x6 6x7 7x7 7x6 6x1 
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IMPLEMENTATION 

The control law expressed by equation 8 
was implemented into a simulation of a 
Kinematically Redundant Planar Manipula- 
tor (KRPM). The KRPM model has a task 
space composed of 3 degrees of freedom: 
X, Z and P (pitch) directions for the 
hand; and all joints are pitch joints. 
The number of pitch joints (n) can be 
specified from 3 to 10. For this study, 
n was set to 4 so that there is only 1 
redundant joint. This was done to form a 
direct analogy with the 7 jointed manipu- 
lator operating in a task space of 6 
degrees of freedom. The 4 jointed KRPM is 
shown in Figure 1. 

The KRPM model was simulated in FORTRAN 
on an HP9000 desktop 32 bit super micro 
computer. The Jacobian is computed 
numerically using a recursive vector form 
[I] to allow the simulation of various 
arms types. The attributes of the manipu- 
lator are described in a data file. 
Various manipulators may be represented 
by changing the data file. 

Implementation of the Control Law 

The optimal RRL (equation 8) was 
implemented into the KRPM arm model by 
first adapting the dimensions to those of 
the planar arm. The task space contains 
3 dimensions, and the number of joints 
(n) may be 4 or greater. The RRL for the 
4 jointed KRPM is defined as follows with 
dimensions shown. 

-1 T -1 T -1 
[RRL] = A J ( J A J ) (11) 

4x4 4x4 4x3 3x4 4x4 4x3 

The simulation iterates through the RRL 
to drive the hand to a desired state. The 
flow of the calculation is as follows. 
The arm is positioned at a valid set of 
joint angles (initial e )  and through 
the forward kinematics the resulting hand 
state (initial x) is computed. Then an 
input is made to indicate the desired 
final hand state for the arm (final x). 
The difference between the two hand 
states (Ax) is found. 

AX Xfinal - Xinitial (12) 

The number of steps to take during the 
trajectory ( s )  can be selected. The 
vector Ax is divided into s steps. 
The RRL is computed using equation 11 and 
then the desired joint angle step A8 is 
computed. 

Ae = [RRL] Ax/S (13) 

The joint angles are then updated by 
adding the changes in joint angles. 
This procedure is repeated for steps 2 
through s, maintaining the same step 

lengtn in distance (X and Z) and in rota- 
tion but with an adjustment in the vec- 
tor direction (Ax). After the last 
step is taken (step number s ) ,  a Newton- 
Raphson (NR) iteration is automatically 
invoked to trim up the final hand state 
to within a tolerance of the desired hand 
state. This method does not consider the 
joint rates of the manipulator. This 
simulation progresses by taking steps. 

Step Size 

A study was performed to determine the 
step size needed to provide hand motion 
along a straight line. Good results are 
measured by inspecting the path that the 
end-effector describes. The ideal 
trajectory should $be a straight line. 
Several trajectories were tested while 
varying the number of steps between 1 and 
80. A ten step iteration results in a 
reasonably straight hand trajectory, but 
eighty steps were required for very good 
results. 

BEHAVIOR OF THE OPTIMAL RESOLVED RATE LAW 

The ability of the rate law to handle the 
redundancy of the arm was demonstrated by 
driving the arm to the same hand state 
from various starting configurations. 
This also serves as an inverse solution 
to the kinematics, by providing several 
possible joint sets that satisfy the 
requested hand state. In Figure 2 the 
end-effector was commanded to the state 
X=3, Z=O, and Pitch= 0 (3,0,0) from four 
different initial joint configurations. 
In each case the end-effector ends up at 
the final state of (3,0,0), but with 
different final joint angles. This simple 
test demonstrates the ability of the 
control law to drive the KRPM to 
different final joint states for a given 
end-effector state. The final joint 
angles are dependent on the initial joint 
angles. 

The above maneuvers were performed with 
the weighting matrix A in equation 11 
equal to identity. This is the 
equivalent of the pseudo-inverse 
solution. 

The Effect of the Weighting Matrix 

The effect of the weighting matrix on the 
motion was demonstrated by running the 
same trajectory with various values of 
one of the components of the A matrix and 
observing the effects on the motion of 
the corresponding joint. 

In Figure 3 the arm was commanded to 
the end-effector state of (2,0,0) at B 
from the joint angle state (90,-90,0,0) 
at A. When the weighting matrix is not 
used (pseudo-inverse), the final value of 
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the second joint is undesirable (Figure 
3a). When a value of 2.0 is used for 
A(2,2) and 1.0 for all other diagonal 
components of A, the final position of 
joint 2 is noticeably better (Figure 3b). 
Joint 2 moved less from start to finish 
than in Figure 3a. The joint moves 
progressively less from start to finish 
as A(2,2) is increased. The remaining 
pitch joints have moved more to make up 
for the loss of mobility in joint 2 ,  thus 
resulting in a more desirable overall 
f inal arm conf iguration . 
In Figure 3a the final condition of the 
arm is not desirable because joint 2 
could be very near a reach limit, thus 
restricting any future movement after 
arrival at the desired end-effector 
state. In Figure 3d, the final situation 
is much more desirable, because joint 2 
has more freedom to move around in the 
neighborhood of the final end-effector 
state. 

REACH AVOIDANCE ALGORITHMS 

The behavior of the pseudo-inverse of 
equation 9 has been reported to be pecu- 
liar in some cases [ 4 ] .  The peculiarity 
has been associated with joint reach 
limit violations during certain tasks 
such as a closed path or cyclic motion. 
If reach avoidance logic is incorporated 
into the RRL, these problems may be 
resolved. One method of incorporating 
reach avoidance into the RRL is to in- 
clude the upper and lower joint limits as 
a constraint in the optimization 
algorithm [6], which is a complicated 
treatment. A simpler approach is taken 
here which makes use of the weighting 
matrix A in the RRL of equation 11. 

In the previous section the effect of the 
weighting matrix on the arm motion was 
illustrated. It was shown that the 
redundant arm can be controlled to arrive 
at different final joint angles, some 
more desirable than others, and yet 
satisfy the same hand state. With these 
two findings, it is evident that the arm 
can be driven to arrive at various final 
joint angles as desired by controlling 
the weighting matrix during the 
trajectory . 
The components of the weighting matrix 
(diagonal) must be computed repeatedly 
according to some driving requirements. 
Examples of driving requirements are 
obstacle avoidance, joint reach limit 
avoidance, or some mechanical or 
electrical criteria. For this study, the 
goal is reach limit avoidance. 

Three algorithms were implemented for 
evaluation. The first algorithm is the 
simplest: when any joint is within a 
tolerance of a reach limit then the com- 

ponent of the weighting matrix for that 
joint is set to a large value (ABIG), 
otherwise the component is set to unity. 

The second algorithm is similar to the 
first, but has the following requirement. 
If a joint is moving away from its reach 
limit then the weighting matrix component 
for that joint is set back to unity. 
 his encourages the joint to move away 
from the tolerance zone. 

The third algorithm does not use the 
tolerance test. The value of the 
weighting matrix component for each joint 
is scaled from 1 at its mid-range value 
to ABIG at either of its joint reach 
limits. Also, as in algorithm number 2, 
if the joint is moving toward its 
midrange value then the value of the 
weighting matrix component is set to 
unity. This algorithm is designed to 
encourage each joint to stay near the 
midrange value. 

Each of the above three algorithms were 
implemented into the KRPM model described 
previously and tested until validated. 
The algorithms were then used to study a 
single joint encountering a reach limit 
and two joints encountering reach limits 
simultaneously. 

To test the ability to avoid a single 
joint reach limit, a case was taken where 
the start and end of a trajectory are 
known to be valid end-effector states, 
but a reach limit is encountered without 
reach avoidance. In the trajectory that 
was selected the third joint begins at 
-90 degrees, reaches -106 degrees, and 
ends at -81 degrees. Suppose that the 
limit for this joint is at -100 degrees. 
Figure 4 shows the trace of the third 
joint with no reach avoidance and for 
each of the three reach limit avoidance 
algorithms using a value of 100 for ABIG. 
Each of the algorithms successfully 
avoided the imposed reach limit. In 
method 1 the joint angle does not move 
back out of the tolerance zone of 10 
degrees. This is generally not desirable 
because the loss of motion in this joint 
removes the redundancy of the arm. In 
methods 2 and 3, the joint moved back out 
of the reach zone of 10 degrees from the 
reach limit. Methods 2 and 3 allow the 
joint to maintain motion. 

In Figure Sa the arm was commanded from 
the joint state of (90,0,:135,90) to the 
hand state of (-.l,-2,90) causing two 
joints, joint 3 and 4 ,  to approach reach 
limits. With reach avoidance both joint 
positions are improved in the final con- 
figuration (Figure 5b). 

In the case shown in Figure 6a joint 3 
exceeds a -160 degree limit and then goes 
past -180. With reach avoidance (Figure 
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6b) joint 2 swings out dramatically to 
allow joint 3 to avoid its reach limit. 

SUMMARY 

The pseudo-inverse Jacobian with a 
weighting matrix has been implemented 
with reach avoidance capability into a 
simulation of a kinematically redundant 
planar manipulator. This optimal 
resolved rate law has been demonstrated 
in the planar model and reach avoidance 
has been mostly successful with this 
model by dynamically adjusting the compo- 
nents of the weighting matrix during 
maneuvers. Three reach avoidance algo- 
rithms were tested. The locally 
optimized resolved rate law has been 
improved by incorporating joint reach 
avoidance. 
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Figure 1 - A kinematically redundant 
planar manipulator with four joints and a 
task space of X, Z, and Pitch (P). 
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Figure  2 - The KRPM is commanded t o  t h e  
same hand s t a t e  of (3,0,0) a t  B from four  
d i f f e r e n t  i n i t i a l  j o i n t  angle  s t a t e s  a t  A 
t o  demonstrate t h e  behavior of t h e  RRL. 

lA 

wA rEA B 

F igure  3 - E f f e c t s  of t h e  weighting 
mat r ix  on t h e  t r a j e c t o r y  a r e  shown f o r  
va lues  of A ( 2 , 2 )  set  a t  1 ( a ) ,  2 ( b ) ,  10 
( c ) ,  and 1 0 0  ( d ) .  

462 



-72 
-74 
-76 
-78 
-80 

-82 
0) -84 
y -66 8 -66 

6 -92 
-90 

0 - -01 
-96 
-98 

-100 
-108 
- 104 
-106 

0 2 4 6 8 10 12 14 16 16 20 

A -OD3 
STEP 

NONE + METHOD1 0 -OD2 

Figure 4 - The effects of reach avoidance on j o i n t  3 a r e  shown 
during a command from a j o i n t  s t a t e  of (90,0,-90,O) t o  a hand 
s t a t e  of ( 3 , 0 , 0 ) .  The reach l i m i t  is successfu l ly  avoided f o r  
each of  t h e  3 reach avoidance algorithms. 

Figure 5 - Reach l i m i t  avoidance demonstration f o r  t h e  case  of 
two j o i n t s  v i o l a t i n g  reach l i m i t s .  I n  ( a )  j o i n t s  3 and 4 v i o l a t e  
reach l i m i t s  of  -160 and 160. With reach avoidance ( b )  both 
reach l i m i t s  a r e  avoided simultaneously. 
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Figure 6 - I n  ( a )  j o i n t  3 exceeds -180 degrees.  This problem is  
avoided i n  ( b )  when reach avoidance is used. The intermediate  
arm p o s i t i o n s  a r e  shown t o  t h e  r i g h t .  
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